

cBN 基台面结构 pin 紫外光电探测器建模与性能

王进军*,杨嘉伦,刘宇,李梓腾,段玉博

陕西科技大学电子信息与人工智能学院,陕西西安 710021

摘要 采用 Silvaco TCAD 软件构建了立方氮化硼(cBN)基台面结构 pin 型光电探测器数值计算模型,采用控制变量法研 究了 n型、i型、p型 cBN 层材料掺杂浓度、厚度对探测器光电性能的影响,并利用器件物理相关理论对结果进行了分析与 讨论。结果表明:p型 cBN 层掺杂浓度增大时,光电流、暗电流和内量子效率先增大后减小;i型层掺杂浓度增大时,暗电 流减小;n型层掺杂浓度增大,光电流、内量子效率增加;光电流和内量子效率随着 p 层厚度的增大而减小,随着 i 层厚度的 增加而增大;n 层厚度越大,光电流越大。

关键词 探测器; cBN; 光电流; 暗电流; 内量子效率 **中图分类号** TN364+.2 **文献标志码** A

1引言

随着第三代宽禁带半导体的发展,宽禁带半导体 材料因其优异的光电特性受到学者的广泛关注,并且 被广泛应用于制作电子电力器件、光电器件等。紫外 光探测器在现代信息社会中的工业、医学等领域发挥 着极其重要的作用^[1-2]。许多学者对材料性质优异的 高性能探测器进行了深入研究,例如自供电ZnO紫外 光电探测器^[3],以及由MoS₂、黑磷(BP)、六方氮化硼 (hBN)等二维材料构成的光电探测器等^[45]。

近年来,高质量hBN材料生长与hBN光电探测器 制备成为了新的研究热点。Veeralingam 等^[6]在金属 Cu表面合成hBN,制成MS结型探测器,该探测器的 最大响应度为5.022 A/W,外量子效率达到2945%, 并且器件可弯曲;Kaushik等^[7]采用hBN薄膜、金属铂 (Pt)电极制作了MSM型紫外光电探测器,探测器的 暗电流低至10⁻¹⁴ A,但在205 nm 光照下的光电流仅达 到1.79×10⁻¹³ A;Li等^[8]采用hBN厚膜、Ti/Au复合电 极制作了 MSM 型紫外光电探测器, 探测器的最大响 应度为0.5 A/W,204 nm 光照下的光电流达到 10^{-6} A 以上,但暗电流最大值接近10⁻⁶ A;Liu等^[9]在ZnO纳 米阵列/h-BN异质结构中实现了能量带隙以外的光子 吸收上转换,ZnO阵列发生强光子捕获,从而使吸收效 率大于 99.5%, 响应度高达 700 A/W, 光电导增益约 为 2×10³; Wang 等^[10] 采 用 亚 微 米 间 距 气 相 沉 积 (SSVD)方法,以硼薄膜为固体源,在蓝宝石衬底上获 得了从单层到几十纳米厚度的2 inch (1 inch= **DOI:** 10.3788/AOS230801

2.54 cm)hBN单晶层,外延hBN层具有极高的结晶质量,可用于二维半导体电子和光电子器件制备。

与hBN相比,立方氮化硼(cBN)具有更大的禁带 宽度[cBN:(6.4±0.5) eV;hBN:(5.9±1.0) eV], 以及更高的硬度和熔点^[11-13],因此 cBN 基光电探测器 更具优势。然而,目前有关 cBN 基光电探测器的报道 很少,主要原因是 cBN 内部存在大量自发缺陷,并且 工艺不统一^[14-16],导致制备器件的掺杂效率不高,同时 不同的掺杂物质表现出的光学、电学性能不尽相同^[17], 使得探测器性能表现不佳。另外,不同的 pin结构^[18]、 APD 结构^[19],或者异质结类型^[20]的光电探测器也会带 来性能的差异。

Silvaco TCAD 是目前商用最为成功的半导体工 艺和器件仿真软件之一,其数值计算是基于一系列的 物理模型及物理方程,这些方程以已经成熟的固体物 理和半导体物理理论或者一些经验公式为基础,可以 精确预测半导体器件的电学、热学、光学结果。另外, 允许用户自定义材料库中没有的材料,这为研究设计 带来极大的便利。基于此,本文通过Silvaco TCAD软 件中的Atlas 工具自定义 cBN 材料,构建了 cBN 基台 面结构 pin 光电探测器的数值计算模型。采用控制变 量法,模拟计算了 n型、i型、p型 cBN 层掺杂浓度及厚 度对 pin 光电探测器的光电流、暗电流以及内量子效率 的影响,并对相关的结果进行了分析与探讨。

2 结构设计与建模

cBN基 pin 光电探测器的器件结构^[21-24]如图 1 所

收稿日期: 2023-04-11; 修回日期: 2023-04-28; 录用日期: 2023-05-06; 网络首发日期: 2023-06-28

基金项目:西安市未央区科技计划项目(201705)

通信作者: *wangjinjun6113@126.com

示,自下而上依次为0.2 µm厚的蓝宝石衬底、2.0 µm 厚的n型cBN层、0.6 µm厚的本征cBN层、0.1 µm厚 的p型cBN层。阴、阳电极采用Ti/Al、Ni/Au复合电 极,厚度为0.5 µm,长度为0.5 µm。

采用 Silvaco TCAD 中的 Atlas 软件建立的 cBN 台 面结构 pin 光电探测器数值计算模型如图 2 所示。考 虑到实际器件制备实验过程中通常无法得到本征 cBN 材料,为了反映器件实际情况,图 2 中用轻掺杂的 n型 cBN 代 替 本 征 cBN 层,设其载流子浓度为 1× 10¹⁵ cm⁻³。Ti/A1阴极、Ni/Au阳极与 cBN 材料的接触 类型为欧姆接触。

模拟计算中涉及的模型包括迁移率模型和复合模型,其中迁移率模型采用浓度依赖迁移率模型(conmob)和平行电场依赖迁移率模型(fldmob)。在器件内部存在载流子浓度梯度和内建电场,在外加偏压和光照下会发生扩散-漂移运动,形成光、暗电流。浓度依赖迁移率模型也称为低场迁移率模型^[25],可表示为

$$\mu_{\rm n0} = \mu_{\rm mun} \left(\frac{T_{\rm L}}{300} \right)^{-T_{\rm mm}},\tag{1}$$

图2 光电探测器数值计算模型

$$\mu_{\rm p0} = \mu_{\rm mup} \left(\frac{T_{\rm L}}{300} \right)^{-T_{\rm mup}},\tag{2}$$

式中: μ_{n0} 、 μ_{p0} 分别为电子、空穴迁移率; μ_{mun} 、 μ_{mup} 表示室 温下电子、空穴的迁移率,分别为200 cm²/(V·s)、 50 cm²/(V·s); T_{mun} 、 T_{mup} 为温度依赖常数; T_{L} 为晶格 温度。

平行电场依赖迁移率模型主要用于计算载流子的 漂移速度,由载流子迁移率和电流方向上的电场分量 的乘积得到,表达式为

$$\mu_{n}(E) = \mu_{n0} \left\{ \frac{1}{\left[1 + \left(\frac{\mu_{n0}E}{v_{satn}} \right)^{a_{BETAN}} \right]}{1} \right\}^{\frac{1}{a_{BETAN}}}, \quad (3)$$

$$\mu_{\mathrm{p}}(E) = \mu_{\mathrm{p}0} \left\{ \frac{1}{\left[1 + \left(\frac{\mu_{\mathrm{p}0}E}{\upsilon_{\mathrm{satp}}}\right)^{a_{\mathrm{BETAP}}}\right]}\right\}^{\overline{a_{\mathrm{BETAP}}}}, \quad (4)$$

式中:E为平行电场; v_{satn}、v_{satp}分别表示电子、空穴的饱和迁移速度; a_{BETAN}、a_{BETAP}为常数, 分别取2、1。

复合模型中主要考虑俄歇(Auger)复合与肖克利-里德-霍尔(SRH)复合。Atlas中的SRH模型描述方 法为

$$R_{\rm SRH} = \frac{pn - n_{\rm ie}^2}{T_{\rm AUP0} \left[n + n_{\rm ie} \exp\left(\frac{E_{\rm TRAP}}{kT_{\rm L}}\right) \right] + T_{\rm AUN0} \left[p + n_{\rm ie} \exp\left(\frac{-E_{\rm TRAP}}{kT_{\rm L}}\right) \right]},\tag{5}$$

式中:p、n、n_{ie}分别为材料的空穴、电子和本征载流子浓度;E_{TRAP}表示发生复合时的陷阱能量;T_{AUP0}、T_{AUN0}分别为室温空穴、电子寿命,其值均为10⁻⁸s;k为玻尔兹曼常数。

俄歇复合模型的表达式为

 $R_{Auger} = \kappa_{Aug,n} (pn^{2} - nn_{ie}^{2}) + \kappa_{Aug,p} (np^{2} - pn_{ie}^{2}), (6)$ 式中: $\kappa_{Aug,n}, \kappa_{Aug,p}$ 分别表示电子、空穴的俄歇系数,采用 软件默认值。

另外,模拟计算过程中涉及的基本方程包括泊松

方程、载流子连续性方程和载流子输运方程。泊松方 程为

$$\operatorname{div}(-D) = (\varepsilon \nabla^2 \psi) = -\rho, \qquad (7)$$

式中:D为电感应强度; ε为材料相对介电常数与真空 介电常数的乘积; ψ表示静电势; ρ为电荷密度。

载流子输运方程为

$$\begin{cases} J_{n} = qn\mu_{n}E_{n} + qD_{n}\nabla n\\ J_{p} = qp\mu_{p}E_{p} + qD_{p}\nabla p \end{cases}$$
(8)

式中:J_n、J_p为电子、空穴电流密度;q为电子电荷量;

第 43 卷 第 20 期/2023 年 10 月/光学学报

 D_n 、 D_p 为电子、空穴的扩散系数;电场E由静电势 ϕ 的 负梯度计算得到,即

$$E = -\nabla \psi_{\circ} \tag{9}$$

载流子连续性方程为

$$\begin{cases} \frac{\partial n}{\partial t} = \frac{1}{q} \operatorname{div} J_{\mathrm{n}} + G_{\mathrm{n}} - R_{\mathrm{n}} \\ \frac{\partial p}{\partial t} = -\frac{1}{q} \operatorname{div} J_{\mathrm{p}} + G_{\mathrm{p}} - R_{\mathrm{p}} \end{cases}, \tag{10}$$

式中: G_n 、 G_p 分别为电子、空穴的产生率; R_n 、 R_p 分别为 电子、空穴的复合率。

3 结果与讨论

计算过程中cBN禁带宽度取6.4 eV,介电常数取 7.1,电子亲和势取4.5 eV^[25]。当光激励入射波长为 120~222 nm,光功率密度为1W/cm²,外加反向偏置 电压为10V,p型cBN层和n型cBN层掺杂浓度分别 为1×10¹⁴ cm⁻³和1×10¹⁹ cm⁻³时,通过Newton非线性 迭代算法^[26]计算得到光谱响应曲线,如图3所示。从 图3可以看出,光电流随波长的增加而增大,大约在 203 nm处达到峰值,之后随着波长的增加而降低,大 约在214 nm处降低为0。这充分说明cBN基光电探 测器对深紫外光波段具有较强的响应能力。

模拟计算各 cBN 层掺杂浓度、厚度对光电探测器性能的影响时,施加的光激励为 205 nm 单色紫外光, 光功率密度仍为 1 W/cm²,反向偏置电压以 0.5 V 为 步长从 0步进增加至 10 V。

图 3 光电探测器光谱响应曲线

Fig. 3 Spectral response curves of the photodetector

3.1 p型cBN层掺杂浓度对器件光电性能的影响

当 n 型、i 型、p 型 cBN 层厚度分别取 2.0、0.6、 0.1 μ m,n型 cBN 层掺杂浓度为 1×10¹⁹ cm⁻³、i 型 cBN 层掺杂浓度为 1×10¹⁵ cm⁻³,p型 cBN 层掺杂浓度依次 为 1×10¹⁴、1×10¹⁵、1×10¹⁶、1×10¹⁷、1×10¹⁸、1×10¹⁹、 1×10²⁰ cm⁻³时,模拟计算得到的器件光电流、暗电流、 内量子效率分别如图 4~6 所示。

从图 4 可以看出:光电流随 p 型 cBN 层掺杂浓度的增加而增大,但掺杂浓度超过 1×10¹⁷ cm⁻³时,光电

流减小;光电流随着外加电压的增加而增大,最终趋向 于饱和。掺杂浓度为 1×10^{17} cm⁻³时光电流最大,约为 2.756×10⁻⁸ A;掺杂浓度为 1×10^{18} cm⁻³时,光电流减 小至2.753×10⁻⁸ A。p型 cBN 层重掺杂时出现光电 流减小的原因可能是p型 cBN 层空穴浓度较大,空穴 与电子复合的概率增大,电子-空穴浓度减少。

从图 5 可以看出,p型 cBN 层掺杂浓度从 1× 10¹⁴ cm⁻³ 增大到 1×10¹⁶ cm⁻³时,暗电流逐渐增大,随 后开始降低,而当掺杂浓度为 1×10¹⁹ cm⁻³时暗电流又 增大。1×10¹⁸ cm⁻³ 掺杂浓度对应的暗电流减小至 1.008×10⁻¹⁶ A。从整体来看,在不同外加偏压下电流 值在正负之间变化,这可能是由 cBN 材料内部缺陷, 以及偏压引入的噪声引起的。

图 4 p型 cBN 层不同掺杂浓度下的光电流 Fig. 4 Photocurrent of p-type cBN layer with different doping

从图 6可以看出,内量子效率在波长约为 202 nm 处达到峰值,波长大于 214 nm 时衰减到 0。随着 p型 cBN层掺杂浓度的增大,内量子效率先增加后减小,但 峰值内量子效率都在 70% 以上。掺杂浓度为 1× 10¹⁷ cm⁻³、1×10¹⁸ cm⁻³ 时的内量子效率分别为 70.782%、70.707%,掺杂浓度超过 1×10¹⁸ cm⁻³时内 量子效率明显减小。

图6 p型cBN层不同掺杂浓度下的内量子效率

Fig. 6 Internal quantum efficiency of p-type cBN layer with different doping concentrations

3.2 i型cBN层掺杂浓度对器件光电性能的影响

当 n 型、i 型、p 型 cBN 层厚度分别取 2.0、0.6、 0.1 μ m,p 型 cBN 层掺杂浓度为 1×10¹⁷ cm⁻³,n 型 cBN 层掺杂浓度为 1×10¹⁹ cm⁻³,i 型 cBN 层掺杂浓度依次 为 1×10¹⁴、5×10¹⁴、1×10¹⁵、5×10¹⁵ cm⁻³时,模拟计算 得到的器件光电流、暗电流、内量子效率分别如图 7~9 所示。

从图 7 可以看出,光电流随 i型 cBN 层掺杂浓度的 增大而减小,其中掺杂浓度为 1×10¹⁴、5×10¹⁴、1× 10¹⁵ cm⁻³的光电流最大值约为 2.756×10⁻⁸ A,差值小 于 1×10⁻¹³ A。产生这种现象的原因为:用 n型 cBN 层 代替 i 层时所增加的掺杂浓度提高了电子浓度,导致空 穴与电子的复合概率增大,导致光电流减小。

从图 8可以看出, 暗电流随 i型 cBN 层掺杂浓度的 增大而减小。其中:掺杂浓度为 1×10¹⁴ cm⁻³时的暗电 流最大值为 3.116×10⁻¹⁶ A;掺杂浓度为 5×10¹⁵ cm⁻³ 时, 暗电流变化起伏最小, 暗电流最大值减小到 1.839×10⁻¹⁶ A。产生这种现象的主要原因为:掺杂浓 度增大引起内建电场增强, 耗尽层扩散减弱, 从而抑制 了暗电流。

从图 9 可以看出,内量子效率曲线基本重合,可见

内量子效率随掺杂浓度的增大几乎不变。内量子效率 在约 203 nm 处达到峰值,约为 70.790%,波长大于 214 nm 时衰减到 0。

图 8 i型 cBN 层不同掺杂浓度下的光电流

Fig. 8 Dark current of i-type cBN layer with different doping concentrations

图 9 i型 cBN层不同掺杂浓度下的内量子效率 Fig. 9 Internal quantum efficiency of i-type cBN layer with different doping concentrations

3.3 n型cBN层掺杂浓度对器件光电性能的影响

当 n 型、i 型、p 型 cBN 层厚度分别取 2.0、0.6、 0.1 μ m,p型 cBN 层掺杂浓度为 1×10¹⁷ cm⁻³,i型 cBN 层掺杂浓度为 1×10¹⁵ cm⁻³,n型 cBN 层掺杂浓度依次 为 1×10¹⁴、1×10¹⁵、1×10¹⁶、1×10¹⁷、1×10¹⁸、1× 10¹⁹ cm⁻³时,模拟计算得到的器件光电流、暗电流、内 量子效率分别如图 10~12 所示。

从图 10可以看出,光电流随 n型 cBN 层掺杂浓度 的增大而减小。当掺杂浓度为 1×10^{15} cm⁻³时,光电流 高达 3.842×10^{-8} A。从图 11可以看出, n型 cBN 层掺 杂浓度为 1×10^{18} cm⁻³、 1×10^{19} cm⁻³时暗电流增大明 显。掺杂浓度每增大 10 倍,相应暗电流也增大约 10 倍。掺杂浓度为 1×10^{15} cm⁻³时的最大暗电流约为 5.914×10^{-20} A,在 1×10^{19} cm⁻³时增大到约 2.609× 10^{-16} A。产生该结果的主要原因可能是,掺杂浓度增 大引起扩散电流增大,暗电流增大,这也是图 10 中光 电流减小的主要原因。另外,模拟计算得到的暗电流 远小于实验报道的 BN 体系外光电探测器的最小暗电

流 10⁻¹⁴ A^[27],这可能是因为模拟计算的材料没有缺陷,比较理想,而且杂质均匀分布,因此暗电流小,而在器件实际实验制备过程中由于受工艺影响,材料中引入的缺陷以及杂质的非均匀分布使得暗电流大于模拟计算值。

从图 12 可以看出,内量子效率在波长约为 213 nm 处达到峰值,波长大于 214 nm 时衰减到 0。内量子效 率随 n型 cBN 层掺杂浓度的增大而减小,出现该现象 的原因与图 10 中一致:在低掺杂浓度下,内量子效率 较高;在高掺杂浓度下,扩散电流增加,内量子效率减 小。n型 cBN 层掺杂浓度为 1×10¹⁵ cm⁻³时内量子效 率峰值高达 98.732%。

图 10 n型cBN层不同掺杂浓度下的光电流 Fig. 10 Photocurrent of n-type cBN layer with different doping concentrations

图 11 n型cBN层不同掺杂浓度下的暗电流 Fig. 11 Dark current of n-type cBN layer with different doping concentrations

3.4 p型cBN层厚度对器件光电性能的影响

当 p 型、i 型、n 型 cBN 层掺杂浓度分别取 1×10^{17} 、 1×10^{15} 、 1×10^{15} cm⁻³, n 型、i 型 cBN 层厚度分别取 2.0 μ m 和 0.6 μ m, p 层厚度依次为 0.1、0.2、0.3、0.4、 0.5 μ m 时, 模拟计算得到的器件光电流、暗电流、内量 子效率分别如图 13~15 所示。

从图 13 可以看出:光电流随 p型 cBN 层厚度的增 大而减小;光电流随外加偏压的增加而增大,最终趋向 于饱和。当厚度为 0.1 μm,外加偏压为 10 V时,光电

第 43 卷 第 20 期/2023 年 10 月/光学学报

流约为3.842×10⁻⁸A。

从图 14可以看出:p型cBN层厚度较小时,暗电流 随着 p型cBN层厚度的增加而增大,但小于10⁻¹⁹A;当 厚度超过0.4 μm时,暗电流随着 p型cBN层厚度的增 大而减小。

从图 15可以看出,随着波长的增加,内量子效率 增加,但当波长增大至 214 nm 时,内量子效率急剧下 降。随着 p型 cBN层厚度增大,内量子效率减小。当 p 型 cBN 层厚度为 0.1 μm 时,内量子效率峰值为 98.732%;当厚度为 0.5 μm 时,内量子效率峰值减小 到 98.059%。产生这种现象的主要原因是入射光从 p 侧入射,很多光生载流子会被 p 层吸收,不能扩散到电 场区而形成光电流^[22]。p型 cBN 层厚度越薄,越有利 于光吸收,光电流和内量子效率越高。

图13 p型cBN层不同厚度下的光电流

3.5 i型cBN层厚度对器件光电性能的影响

当 p 型、i 型、n 型 cBN 层掺杂浓度分别取 1×10^{17} 、 1×10^{15} 、 1×10^{15} cm⁻³, n 型、p 型 cBN 层厚度分别取 2.0 μ m 和 1.0 μ m, i 型 cBN 层厚度依次为 0.2、0.4、 0.6、0.8、1.0 μ m 时,模拟计算得到的器件光电流、暗 电流、内量子效率分别如图 16~18 所示。

从图 16 可以看出:在低偏压下,光电流随着 i 型

图 14 p型 cBN 层不同厚度下的暗电流

Fig. 14 Dark current of p-type cBN layer with different thicknesses

图 15 p型cBN层不同厚度下的内量子效率 Fig. 15 Internal quantum efficiency of p-type cBN layer with different thicknesses

cBN层厚度的增大而减小;在高偏压下,光电流随着i型 cBN层厚度的增加而增大。低偏压下,i型 cBN层 厚度为 0.2 μm 时的光电流最大,该结果与 Jubadi 等^[28]、王巍等^[29]构建的 Si基 pin 光电二极管得到的结 论一致;高偏压下,i型 cBN层厚度为 1.0 μm 时光电流 最大约为 3.859×10⁻⁸ A,该结果与 Deilami等^[18]的 GaAs、Si基 pin探测器的研究结果相同。

从图 17 可以看出, 暗电流随着 i型 cBN 层厚度的 增加而增大,这与 Chen 等^[30]在垂直 Ge 基 pin 探测器中 得到的结果一致, 但低于 10^{-20} A。i型 cBN 层厚度为 0.4、0.8、1.0 μm 时, 最大暗电流分别为 4.037×10^{-20} 、 6.439× 10^{-20} 、7.798× 10^{-20} A。这种现象主要是由缺 陷辅助隧穿(TAT)过程中增加高反向偏压引起的^[31]。

从图 18 可以看出,波长小于 207 nm 时内量子效 率迅速增大,之后增速变缓,并在 213 nm 处达到峰值, 接着在 214 nm 处截止。这种在截止波长处快速减小 的现象说明本征层对大于截止波长的光几乎没有吸 收,材料性能表现良好^[32]。内量子效率随着 i型 cBN 层厚度的增大而减小,i型 cBN 层厚度为 0.2 μm 和 0.8 μm 的峰值内量子效率分别为 98.720% 和 98.646%,这与 Deilami等^[18]给出的本征层厚度增加, 内量子效率增大矛盾,产生这种现象的主要原因是计 算中cBN本征层不是理想的本征层,呈现弱n型,厚度 越大,载流子散射越大,内量子效率越低。

图 16 i型 cBN 层不同厚度下的光电流

Fig. 16 Photocurrent of i-type cBN layer with different thicknesses

图 17 i型 cBN 层不同厚度下的暗电流

Fig. 17 Dark current of i-type c-BN layer with different thicknesses

图 18 i型 cBN 层不同厚度下的内量子效率 Fig. 18 Internal quantum efficiency of i-type cBN layer with different thicknesses

3.6 n型cBN层厚度对器件光电性能的影响

当 p 型、i 型、n 型 cBN 层掺杂浓度分别取 1×10¹⁷、 1×10¹⁵、1×10¹⁵ cm⁻³, i 型、p 型 cBN 层厚度分别取 0.8 μm 和 0.1 μm, n 型 cBN 层厚度依次为 1.8、2.0、 2.2、2.4、2.6 μm 时,模拟计算得到的器件光电流、暗

图 19 n型 cBN 层不同厚度下的光电流

Fig. 19 Photocurrent of n-type cBN layer with different thicknesses

图 20 n型 cBN 层不同厚度下的暗电流

Fig. 20 Dark current of n-type cBN layer with different thicknesses

图 21 n型cBN层不同厚度下的内量子效率 Fig. 21 Internal quantum efficiency of n-type cBN layer with different thicknesses

从图 19可以看出,光电流随着 n型 cBN 层厚度的 增加而增大。当 n型 cBN 层厚度为 2.2 μm 时,光电流 为 3.910×10⁻⁸ A;当厚度为 2.6 μm 时,光电流高达 3.987×10⁻⁸ A。产生这种结果的原因可能是 n型 cBN 层厚度增大使得光吸收区域增大,器件体、表面比增 大,表面复合减少,光电流增大。

从图 20 可以看到, 暗电流与n型 cBN 层厚度之间

第 43 卷 第 20 期/2023 年 10 月/光学学报

呈现出不规则的变化规律。当n型 cBN 层厚度为 1.8 μ m时,最大暗电流约为9.242×10⁻²⁰ A;当厚度为 2.0 μ m时,最大暗电流减小到6.439×10⁻²⁰ A;当厚度 为2.2 μ m时,最大暗电流又增大到8.177×10⁻²⁰ A;当 厚度为2.4 μ m和2.6 μ m时,最大暗电流分别减小到 8.096×10⁻²⁰ A和7.571×10⁻²⁰ A。

从图 21 可以看出,内量子效率随着 n型 cBN 层厚 度的增加而减小。产生这种现象的原因可能是 n型 cBN 层的电子迁移率比 p型 cBN 层的空穴迁移率高, n 型 cBN 层厚度增加时,电流在 n型 cBN 层附近聚集加 强,而电流聚集导致热量局部集中,在电子获得更高的 热能后俄歇复合增强,内量子效率降低^[33]。

4 结 论

采用 Silvaco TCAD 软件构建了 cBN 基 pin 型光 电探测器的数值计算模型,模拟计算了n型、i型、p型 cBN层掺杂浓度、厚度对探测器性能的影响。结果表 明:随着p型cBN层掺杂浓度增大,光电流、暗电流、内 量子效率均先增大后减小,但变化不大;随着i型cBN 层掺杂浓度增大,光电流、暗电流减小,内量子效率几 乎无变化;随着n型cBN层掺杂浓度增大,光电流、内 量子效率显著增加,暗电流低至10⁻²⁰A量级。p型 cBN层厚度增大对暗电流几乎无影响,但会使光电流 和内量子效率降低;i型cBN层厚度增大,暗电流升高, 内量子效率下降,光电流随i型cBN层厚度的变化可 能还受到外加反向偏压的影响;n型cBN层厚度增大, 光电流升高,对暗电流、内量子效率影响不大。由于计 算过程中各层掺杂浓度呈均匀分布,复合模型只考虑 俄歇复合和SRH复合,因此本次计算是理想条件下的 结果。当p型cBN掺杂浓度为1×10¹⁷ cm⁻³、厚度为 0.1 μm, i 型 cBN 掺杂浓度为1×10¹⁵ cm⁻³、厚度为 0.8 μm, n型 cBN 掺杂浓度为 1×10¹⁵ cm⁻³、厚度为 2.2 μm 时,器件光电流为3.910×10⁻⁸ A,最大暗电流 为8.177×10⁻²⁰ A,内量子效率高达98.565%。

参考文献

- (1) 史冬梅,杨斌,蔡韩辉.Ⅲ族氮化物第三代半导体材料发展现 状与趋势[J].科技中国, 2018(4): 15-18.
 Shi D M, Yang B, Cai H H. Development status and trend of the third generation semiconductor materials with group Ⅲ nitrides[J]. Scitech in China, 2018, 247(4): 15-18.
- [2] 柯宇轩,岑颖乾,綦殿禹,等.基于二维材料的光通信波段光 电探测器[J].中国激光,2023,50(1):0113008.
 Ke Y X, Cen Y Q, Qi D Y, et al. Photodetector in optical communication band based on two-dimensional materials[J]. Chinese Journal of Lasers, 2023, 50(1):0113008.
- [3] Ouyang W X, Chen J X, Shi Z F, et al. Self-powered UV photodetectors based on ZnO nanomaterials[J]. Applied Physics Reviews, 2021, 8(3): 031315.
- [4] Mondal A, Yadav P V K, Reddy Y A K. A review on device architecture engineering on various 2-D materials toward highperformance photodetectors[J]. Materials Today Communications, 2023, 34: 105094.

第 43 卷 第 20 期/2023 年 10 月/光学学报

研究论文

- [5] Sundararaju U, Mohammad H M A S, Ker P J, et al. MoS₂/h-BN/graphene heterostructure and plasmonic effect for selfpowering photodetector: a review[J]. Materials, 2021, 14(7): 1672.
- [6] Veeralingam S, Durai L, Yadav P, et al. Record-high responsivity and detectivity of a flexible deep-ultraviolet photodetector based on solid state-assisted synthesized hBN nanosheets[J]. ACS Applied Electronic Materials, 2021, 3(3): 1162-1169.
- [7] Kaushik S, Sorifi S, Singh R. Study of temperature dependent behavior of h-BN nanoflakes based deep UV photodetector[J]. Photonics and Nanostructures - Fundamentals and Applications, 2021, 43: 100887.
- [8] Li D D, Gao W, Sun X Y, et al. Direct growth of hexagonal boron nitride thick films on dielectric substrates by ion beam assisted deposition for deep-UV photodetectors[J]. Advanced Optical Materials, 2021, 9(12): 2100342.
- [9] Liu G Z, Chen H, Lu S Q, et al. Upconversion under photon trapping in ZnO/BN nanoarray: an ultrahigh responsivity solarblind photodetecting paper[J]. Small, 2022, 18(22): 2200563.
- [10] Wang G K, Huang J D, Zhang S Y, et al. Wafer-scale single crystal hexagonal boron nitride layers grown by submicronspacing vapor deposition[J]. Small, 2023: 2301086.
- [11] Mohammad S N. Electrical characteristics of thin film cubic boron nitride[J]. Solid-State Electronics, 2002, 46(2): 203-222.
- [12] Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges[J]. Advanced Electronic Materials, 2018, 4(1): 1600501.
- [13] 张淑华.立方氮化硼的电子结构与热力学性质研究[J].重庆工商大学学报(自然科学版), 2011, 28(3): 301-304.
 Zhang S H. Study on electronic structure and thermodynamic properties of cubic BN[J]. Journal of Chongqing Technology and Business University (Natural Science Edition), 2011, 28(3): 301-304.
- [14] 苏海通,许斌,蔡立超,等.添加籽晶对合成立方氮化硼单晶 的影响[J].人工晶体学报,2015,44(10):2679-2684.
 Su H T, Xu B, Cai L C, et al. Influence of adding seed crystals on synthesis of cubic boron nitride single crystal[J]. Journal of Synthetic Crystals, 2015, 44(10):2679-2684.
- [15] Zhao Y, Gao W, Xu B, et al. Thick c-BN films deposited by radio frequency magnetron sputtering in argon/nitrogen gas mixture with additional hydrogen gas[J]. Chinese Physics B, 2016, 25(10): 106801.
- [16] Ma K. Synthesis of cubic boron nitride under relatively lower pressure and lower temperature via chemical reaction[J]. Glass Physics and Chemistry, 2020, 46(2): 181-185.
- [17] 刘彩云,高伟,殷红.立方氮化硼的研究进展[J].人工晶体学报,2022,51(5):781-800.
 Liu C Y, Gao W, Yin H. Research progress of cubic boron nitride[J]. Journal of Synthetic Crystals, 2022, 51(5):781-800.
- [18] Deilami S, Abbasi K, Houshyar A, et al. Study the effect of temperature variation and intrinsic layer thickness on the linear response of a PIN photodetector: a finite element method approach[J]. Results in Engineering, 2023, 17: 100810.
- [19] 叶伟,杜鹏飞,权贝贝,等.In_{0.83}Al_{0.17}As倍增层对 In_{0.83}Ga_{0.17}As/GaAs雪崩光电探测器的特性影响[J].光学学报, 2023,43(4):0404001.
 Ye W, Du P F, Quan B B, et al. Effect of In_{0.83}Al_{0.17}As multiplication layer on characteristics of In_{0.83}Ga_{0.17}As/GaAs avalanche photodetector[J]. Acta Optica Sinica, 2023, 43(4): 0404001.
- [20] 吴刚, 唐利斌, 郝群, 等. 基于 Pt/GaN/AlGaN 异质结高响应

度双波段紫外探测器[J].光学学报, 2023, 43(3): 0304002. Wu G, Tang L B, Hao Q, et al. Dual-band and highresponsivity ultraviolet detector based on Pt/GaN/AlGaN heterojunction[J]. Acta Optica Sinica, 2023, 43(3): 0304002.

- [21] 周脉鱼,周蕾,郑南,等.p-i-n结构GaN光电探测器性能的研究[J].中国激光,2011,38(1):0117001.
 Zhou M Y, Zhou L, Zheng N, et al. Investigation on properties of p-i-n structured GaN photodetectors[J]. Chinese Journal of Lasers, 2011, 38(1):0117001.
- [22] 周梅,李春燕,赵德刚.背照射和正照射p-i-n结构GaN紫外探 测器的 i-GaN和p-GaN厚度设计[J].发光学报,2015,36(9): 1034-1040.

Zhou M, Li C Y, Zhao D G. Effects and design of i-GaN and p-GaN layer thickness on the back-illuminated and frontilluminated GaN p-i-n ultraviolet photodetectors[J]. Chinese Journal of Luminescence, 2015, 36(9): 1034-1040.

- [23] Clinton E A, Vadiee E, Shen S C, et al. Negative differential resistance in GaN homojunction tunnel diodes and low voltage loss tunnel contacts[J]. Applied Physics Letters, 2018, 112(25): 252103.
- [24] 夏少杰,陈俊.p-i-n InP/InGaAs光电探测器的电流及电容特 性研究[J]. 红外, 2021, 42(1): 1-5, 32.
 Xia S J, Chen J. Research on current and capacitance characteristics of p-i-n InP/InGaAs photodetector[J]. Infrared, 2021, 42(1): 1-5, 32.
- [25] 冯双. 氮化硼的半导体特性和紫外光电探测器的基础研究[D]. 长春: 吉林大学, 2014: 87.
 Feng S. Basic research on semiconductor characteristics of boron nitride and ultraviolet photoelectric detector[D]. Changchun: Jilin University, 2014: 87.
- [26] ATLAS user's manual: device simulation software: Version 5. 20. 2. R[M]. Santa Clara: SILVACO International, 2015: 96-97, 154.
- [27] Xie F, Gu Y, Hu Z J, et al. Ultra-low dark current backilluminated AlGaN-based solar-blind ultraviolet photodetectors with broad spectral response[J]. Optics Express, 2022, 30(13): 23756-23762.
- [28] Jubadi W M, Noor S N M. Simulations of variable I-layer thickness effects on silicon PIN diode I-V characteristics[C]// 2010 IEEE Symposium on Industrial Electronics and Applications (ISIEA), October 3-5, 2010, Penang, Malaysia. New York: IEEE Press, 2011: 428-432.
- [29] 王巍,白晨旭,冯其,等. 硅基 PIN 光电探测器结构参数对其 性能的影响[J]. 半导体光电, 2013, 34(3): 379-382.
 Wang W, Bai C X, Feng Q, et al. Influence of structure parameters on performance of silicon PIN photodetector[J]. Semiconductor Optoelectronics, 2013, 34(3): 379-382.
- [30] Chen H, Verheyen P, De Heyn P, et al. Dark current analysis in high-speed germanium p-i-n waveguide photodetectors[J]. Journal of Applied Physics, 2016, 119(21): 213105.
- [31] Zhao X W, Wang G L, Lin H X, et al. High performance p-i-n photodetectors on Ge-on-insulator platform[J]. Nanomaterials, 2021, 11(5): 1125.
- [32] Wang C K, Ko T K, Chang C S, et al. The thickness effect of p-AlGaN blocking Layer in UV-a bandpass photodetectors[J]. IEEE Photonics Technology Letters, 2005, 17(10): 2161-2163.
- [33] 刘梦玲.高电流扩展性GaN基LED芯片设计与制造技术[D]. 武汉:武汉大学, 2019: 9-10.
 Liu M L. Study on design and manufacturing technology of GaNbased light-emitting diodes with superior current spreading[D].
 Wuhan: Wuhan University, 2019: 9-10.

Performance and Modeling of pin UV Photodetector with cBN-Based Mesa Structure

Wang Jinjun^{*}, Yang Jialun, Liu Yu, Li Ziteng, Duan Yubo

School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an

710021, Shaanxi, China

Abstract

Objective In recent years, there have been many studies on the preparation of high-quality hexagonal boron nitride (hBN) materials and the application of hBN ultraviolet (UV) photodetectors. Cubic boron nitride (cBN) has a higher band gap compared with hBN [cBN: (6.4 ± 0.5) eV, hBN: (5.9 ± 1.0) eV], and a higher hardness and melting point, which makes cBN-based UV photodetectors more advantageous. However, on one hand, due to a large number of spontaneous defects inside cBN and the non-uniform process, which result in poor doping efficiency of the prepared devices; on the other hand, different doped impurities exhibit different optical and electrical properties, both making the poor performance of the detectors. Additionally, different photodetector structures such as pin, APD, and heterostructure can also bring about performance differences. Silvaco TCAD software is based on a series of physical models and physical equations that rely on well-established solid-state and semiconductor physics theories or on some empirical formulas to accurately predict the electrical, thermal, and optical results of semiconductor devices. Meanwhile, mesa pin photodetectors feature low dark current and high internal quantum efficiency. Therefore, a numerical model of cBN-based mesa structured pin photodetector is built by Silvaco TCAD software, and the effects of different doping concentrations and thicknesses of the cBN layer on photocurrent, dark current, and internal quantum efficiency of this model are calculated.

Methods The numerical calculation model of cBN-based mesa-structured pin is built by Silvaco TCAD software (Fig. 2). As the intrinsic layer is n-type by default in the undoped case, it is replaced by a n-type cBN with a doping concentration of 1×10^{15} cm⁻³ and a thickness of 0.6 µm, and p-type and n-type background carrier concentrations are set as 1×10^{14} cm⁻³ and 1×10^{19} cm⁻³ with thicknesses of 0.1 µm and 2.0 µm respectively. Based on the constant low-field mobility model (conmob), parallel electric field-dependent mobility model (fldmob), Auger recombination, Shockley-Reed-Hall (SRH) recombination, and basic semiconductor equations of Poisson's equation, carrier transport equations, and carrier continuity equations, the effects of doping concentrations of each layer and thicknesses of each layer on the photocurrent, dark current and internal quantum efficiency are simulated and calculated by the "control variate" method. Firstly, the spectral response of the initial structure is obtained in the deep UV band (Fig. 3), which indicates that the device has a strong response to deep ultraviolet. Secondly, on this basis, the doping concentrations of p-type, i-type, and n-type layers are varied to analyze the changes in performance parameters and select the better doping concentration values with sound device performance. Finally, the thicknesses of p-type, n-type, and intrinsic layers are changed to analyze the performance and select better values.

Results and Discussions The doping concentration of p-type rises, and the photocurrent, dark current, and internal quantum efficiency firstly increase and then decrease (Figs. 4-6). This is because the concentration of holes in the p-type region is higher and the probability of recombination increases, resulting in fewer electron-hole pairs generated by photoexcitation. The photocurrent and dark current decrease with the increasing doping concentration of the i-type layer, while internal quantum efficiency is hardly affected (Figs. 7-9). The possible reason is that the intrinsic layer is replaced by a n-type layer and the rising electron concentration increases the recombination probability, leading to the decreased photocurrent. The dark current decreases with the rising doping concentration which enhances the built-in electric field. The dark current increases with the increasing doping concentration of the n-type layer (Fig. 11), but the photocurrent and internal quantum efficiency decrease with it (Figs. 10 and 12). The possible reason is that the heavy doping concentration of the n-type layer increases the diffusion current inside the region, which causes decreased photocurrent and internal quantum efficiency and increased dark current. The photocurrent and internal quantum efficiency decrease while the dark current increases with the rising thickness of the p-type layer (Figs. 13-15). Many photogenerated carriers will be absorbed by the p-type layer, which is too thick to allow carriers to diffuse into the electric field region and form photocurrent. The dark current increases with the thickness of the intrinsic layer while the internal quantum efficiency decreases with it (Figs. 17 and 18). Differently, the thicker intrinsic layer thickness leads to a smaller photocurrent at low bias, but the photocurrent is positively correlated with thickness at high bias(Fig. 16). Thus, the effect of bias voltage on photocurrent should be considered. An increase in the n-type layer thickness increases the photocurrent but causes a little decrease in the

internal quantum efficiency, without clear regularity of thickness and dark current (Figs. 19–21). The increasing thickness of the n-type layer means rising light absorption area, and the rising volume/area ratio decreases the recombination. Those could be the possible factors for the photocurrent increase, which causes the current crowding phenomenon, then local heat concentration, and higher thermal energy obtained by electrons. Finally, Auger recombination is enhanced to reduce the internal quantum efficiency.

Conclusions The increase in the doping concentration of the p-type layer makes all the parameters increase first and then decrease, but the overall change has little effect. The increasing doping concentration of the i-type layer decreases the photocurrent and dark current and has little effect on the internal quantum efficiency. The rising doping concentration of the n-type layer makes the photocurrent and internal quantum efficiency increase, and the dark current greatly decreases to around 10^{-20} A. Increasing the thickness of the p-type layer exerts almost no effect on the dark current, but decreases the photocurrent and internal quantum efficiency. The rise in intrinsic layer thickness will increase the dark current and decrease the internal quantum efficiency. The photocurrent change with the thickness of the intrinsic layer may also be controlled by the bias voltage. The larger thickness of the n-type layer leads to larger photocurrent, but it has little effect on the dark current and internal quantum efficiency. Since there are no defects in the material during the simulation and the impurities are uniformly distributed, the calculation results are ideal. However, the actual experimental preparation of the device is influenced by the process factors, and the various defects introduced in the material and the non-uniform distribution of impurities make the actual value worse than the simulated calculation value. Finally, the doping concentrations of p-type, i-type, and n-type layers are set as 1×10^{17} cm⁻³, 1×10^{15} cm⁻³, and 1×10^{15} cm⁻³, and the thicknesses of p-type layer, i-type layer, and n-type layer are 0.1 µm, 0.8 µm, and 2.2 µm respectively, the performance obtains the photocurrent is 3. 910×10^{-8} A, with a maximum dark current of 8.177×10^{-20} A and internal quantum efficiency of 98.565%.

Key words detector; cBN; photocurrent; dark current; internal quantum efficiency